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Even though ensemble averages are sometimes equivalent, or even preferable, to spatial averages, 
the latter have incontestable significar,ce. Spatial averaging, which has been restricted until now 
to basic electromagnetic equations, is applied here to the Cauchy equation of movement. Spatial 
filtration of microscopic properties is especially useful in the case of continuous media subjected 
to long-range forces, for which no intuitive macroscopic reasoning is possible. 

In a continuous medium, long-range microscopic forces also reach the particles 
(atoms, electrons, etc.) of the inner part of the medium. However, the volume distribu
tion of these microscopic forces may result, through macroscopic averaging, in a sur
face force distribution exerted on the face of the body. For example, this is the case 
for a dielectric continuous medium which is electrically polarized. As a consequence 
of this, in macroscopic equations, there is not necessarily a canonical ( or intrinsic) 
separation between long-range forces and surface contact pressure forces. This 
explains why the simple addition of a term representing the long-range forces is not 
sufficient to extend the validity of macroscopic equations to cases in which a medium 
is submitted to long-range forces. 

A good example of an intuitive reasoning which is difficult to generalize in the 
presence of long-range forces is the derivation of the Cauchy equation of movement! 
of a medium, 

v . T + f - (lr = 0, (1) 

which is a basic equation in chemical physics and chemical engineering. In this 
article, we shall concentrate our attention on this equation which links the pressure 
or stress tensor T to the distribution of external forces f exerted on the medium, 
and to the acceleration r of the medium; (l is the mass density. 

T, f, g, r are macroscopic parameters, which can be defined either as ensemble 
averages for a given statistical state, 
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using the distribution function qJ(N) of the statistical state for medium N, or alternati
vely, as spatial averages for a given instantaneous configuration of the bodies. 
In the case of ensemble averages, the Cauchy equation can be derived exactly by 
using the Liouville theorem twice (see for example ref. 2). In the case of spatial 
averages, Eq. (1) remains to be proved and its interpretation clarified, which is our 
intention in this paper. 

THEORETICAL 

Like many equations dealing with continuous media, Eq. (1) is obtained by consi
dering a macroscopic elementary volume of the medium, which is a way of intro
ducing macroscopic spatial averages of microscopic parameters. In the case where 
medium N exerts no long-range forces on itself, Eq. (1) can be established by applying 
the principle of dynamics F = mT to a unit elementary volume B of the considered 
medium N. To avoid ambiguities in the definition of bodies, and hence of forces, 
let us adopt the notation X " Y for the part of body X which is not included in body 
Y; X will be omitted when it stands for all the existing bodies, so that " Y represents 
the outside of Y. The resultant force F( " B --+ B) exerted on B by the outside is the 
sum of (i) the force distribution f == f( "N --+ B) exerted on B by the outside of the 
medium and (ii) the surface force distribution 

feN " B --+ B) = n • T (2) 

exerted on the surface of B by the rest of the medium (n is the outer unit vector 
normal to the surface of B). We have 

(3) 

and Eq. (1) follows. In the case where the medium N "B also exerts long-range forces 
on B, a macroscopic force distribution ('(N " B --+ B) must be added to the previous 
surface force distribution f( N " B --+ B). It is then difficult to distinguish between 
these two distributions because (' may comprise a surface distribution. A priori, 
relation (2) between the surface force f(N" B --+ B) and n. T is no longer valid. 
In addition, it is not clear whether the force distribution ('(N" B --+ B) can be added 
to fin Eq. (1), because the definition of T already takes into account the microscopic 
interactions corresponding to this force. For these two reasons, Eq. (1) ceases to 
be intuitive. 

We shall show now that Eq. (1) is valid in spatial average in all cases. For proving 
this we shall use a more accurate manner of performing the averaging operation 
which consists of spatial filtration2 •3 • This process has been well illustrated in the 
macroscopic eq uations for electromagnetism 3 . The spatial average < G >( x) of a physical 
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parameter G(x) defined in space (G is a function or a distribution) is obtained2 •3 

by convolution of G with a spatial filter function: 

<G) = G * a 

<G(x» = fG(u) a(x - u) d3u. (4) 

The filter function a is chosen once and for all. Its support or carrier is concentrated 
in a neighborhood of the origin around which the function has the spherical sym
metry: a(x) = a(r); a is normalized to unity: Ja(x) dv = 1. Either a bell or a crenel
-shaped profile may be chosen for a. 

The radius R beyond which a is almost negligible (i.e. J~ 41tr2 a(r) dr ~ 1) defines 
the macroscopic scale. 

Macroscopic Force 

In spatial averages, the macroscopic force exerted on a body Y by a body X, at a given 
time, is defined as 

<f(X -. Y» = L L f(i -. j) bj * a • 
ieX jeY 

i*j 

(5) 

The condition i =4= j concerning the particles i, j, is irrelevant when the bodies X 
and Yare disjoint. The internal macroscopic force 

(6) 

is not zero a priori, even for forces which satisfy the action and reaction equality 
principle. In fact, 

<f(X -. X» = L 'L,,(i -. j){b j - bi) * a 
leX jeX 

i<j 

(7) 

is not zero in general, because the distances from particles i and j to the observation 
point x differ in general; it is different from zero even when the filter function a is 
chosen to be uniform, i.e. of uniform value of (i1tR3t1 in the ball (0, R). In terms 
of distributions, it is therefore important to distinguish between the external force 
<f(" X -4 X» and the macroscopic total force 

<f( -.X» = <f(" X -4 X» + <f(X -. X» (8) 

exerted by all the existing bodies. 

Divergence of the Pressure Tensor 

Let A be any body. The pressure tensor of A is the sum of the particles pressure 
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tensor Tp and of the field pressure tensor Tj of A. In spatial averages, the mean velo
city of the body A at point x is 

(9) 

The microscopic pressure tensor of the particles of body A is defined as the distribu
tion: 

Tb = - I miv~(5i' (10) 
iEA 

(here the tensor product is written without a mUltiplication sign), or rather 

Tp = - I mlv i - V)2 ()i • (11) 
ieA 

Its spatial average is 

<Tp) = Tp * a = - I miv~ a(x - i) + (0) v2 • (12) 
iEA 

In ensemble average, the acceleration is defined as 

(13) 

by means of the average velocity V1 == V1(x, t) == <P)cns/<e)cns' In spatial 
averages, it can be defined in a similar way, using the time derivative dV/dt of 
Vex; (i), (Pi), t) (where i and Pi represent the microscopic positions and momenta) 
considered at a fixed point x: 

dV r( x) = -- + V. VV . 
dt 

Obviously, we have r =1= rio as V =1= V1 • 

The time derivative, which transforms a distribution G«;), (p;), t) into 

dG == ~ G«i(t)), (p;(t»), t), 
dt dt 

(14) 

(15) 

can be applied either to a microscopic distribution G or to its spatial average <G). 
The dJdt notation is assumed because the derivative operates on all occurences of t 
in G, i.e. is a total derivative. The c/et notation, as in Eq. (13), is possible too for the 
same derivative (15), to emphasize the fact that the derivative does not operate on the 
spatial variable x of distribution G. The d/dt derivative commutes with the convolu
tion *. This property of the mathematical distributions leads to the equalities 
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and 

/dP) = d<p) 
\ dt dt 

d<(!) V = -V. «(!) V) V, 
dt 

2163 

(16) 

(17) 

which are not trivial from a physical point of view, because of the various physical 
terms composing the derivatives; the equations corresponding to Eqs (16) and (17) 
in ensemble average are consequences of the Liouville theorem. Using Eqs (12), (14), 
(16), (17), we obtain 

V. <Tp) = - I mivi . Va(x - i) + V(,,) . v2 + <e) v. vv + <,,) (V . V) V = 
iEA 

= <(!) r - I miY/>i * a , (18) 
ieA 

where Yi is the acceleration of particle i. The microscopic equation of movement 
allows the replacement of miYi by the total microscopic force 

f( " i --> i) = f( "A --> i) + f(A" i --> i) (19) 

exerted on particle i. Therefore we obtain 

(2U) 

The microscopic pressure tensor TJ of the electromagnetic field is defined4 as the 
distribution 

T E2 - 182 1 (E2 - IB2) , 
J = Go + /lo = "2 GO + Ito 2 , (21) 

where E and 8 are the microscopic electromagnetic fields created by A, and '2 == 
== diag(l, 1, I) is the identity tensor of order two. Tensor (21) has been primarily 
devised to represent the r- 1 interactions, but Eq. (21) can also take into account 
short range interactionss.6 (in r- 6, r- 12, etc.), since these interactions are actually 
weighted averages of r;j 1 interactions. Other potential pressure tensors, specially 
devised7 for various potential shapes, are often used, allowing a reduction in the 
number of particles. It is possible to consider here only tensor (21) because other 
pressure tensors are only approximations of Eq. (21), as the potentials r- 6 , r- 12 , 

etc. are only approximations of r- 1 interacting particle densities. 

Gravitational forces are generally dealt with separately, and therefore the Earth 
is excluded here from the assumed body A. The gravitational field tensor should be 
added to expression (21), but it is negligible in this case. 
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The divergence of T J is4 

(22) 

and the divergence of the spatial average (TJ ) = TJ * a is therefore 

(23) 

We assume the same conditions as those under which Eq. (1) in ensemble average 
is obtained, i.e. the conditions when the radiation term a/at II is negligible. Then 

(24) 

From Eqs (20) and (24), we find that the total pressure tensor (TA.) = (Tp) + <TJ ) 

has the divergence 

V. <TA.) = <e) r - <f(,A --+ A». (25) 

which by its form is identical with Eq. (1). 
We know that the radiation term appearing in the classical three-dimensional 

divergence (22) of TJ disappears if we consider the three-dimensional part of the 
four-dimensional divergence V . TJ , the average of which is just given by Eq. (24). 
A relativistic formalism may hardly be considered here, because definition (4) is 
instantaneous and purely spatial: it remains meaningful for each observer but defines 
a parameter <G) depending on the observer. On the contrary, spatial averages are 
compatible with a quantum formalismS, in which the discrete sums above are re
placed by strictly instantaneous densities. 

Spatial Average at the Face of a Body 

Understanding the behaviour of spatial averages9 at the boundary of a body is im
portant for a correct derivation of the macroscopic electromagnetic equations. The 
same holds for Eq. (25). 

Eq. (25) may be applied to a body consisting of a small number of particles or 
a great number of particles. Let us consider the case where A is the body bounded 
by a closed surface, in a continuous medium N. Let us assume, for instance, that 
the medium N undergoes a slow deformation (V small, r negligible), and let the field 
of displacements be denoted by 15:. 

The work of the macroscopic distribution of external force acting upon A is 
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obtained from Eq. (25) as 

(26) 

In principle, the integration is to be performed over the whole space, but, in practice, 
it is reduced to a neighborhood of the volume occupied by A. More precisely, it is 
reduced as noted above with R being the physical radius of the support of the filter 
function a. Let At and A2 be surfaces parallel to the surface of A at the distance R, 
inside and outside A respectively. Outside A2 , V. <TA ) is zero, as it follows from 
Eq. (25), and b W expressed as* 

(27) 

reduces therefore to two first terms. Owing to the discontinuity of the body A, <TA ) 

varies very rapidly between At and A2 in the direction n perpendicular to the surface 
of A. By integrating V. <TA ) first in this direction, i.e. on a segment of the length 
of 2R (on which t5~ is almost uniform), one obtains the jump [<TA)] = <TA) (A~) -
<TA) (At) of <TA). Eq. (26) therefore becomes 

(28) 

In common cases (nonpolarized media), [<TA)] equals to the pressure tensor - <TA) 
calculated in A at a distance R from the face, that is calculated on At as in the first 
term of Eq. (28). This is because <TA) (A2) is zero: the pressure of particles «TA)p) 
(A2) is zero by definition, since no particle of A exists within a radius R around 
any observation point x located on A 2 , and the pressure of the field «TA)f) (x) is 
zero because A creates a zero electromagnetic field outside A2 • 

On the contrary, we have «TA)f) (A2) :F 0 and [<TA)] = «TA)f> (A2) -
<TA ) (At) for a continuous medium which is electrically or magnetically polarized 1 0. 

It may be noted that the calculation of «TA)f> is simpler on A2 because of the dis
tance R which separates the observation point x from any particle of A. For example, 
the electric term of T f can be expressed 11 as a function solely of the macroscopic 
field <fA) = fA * a because in <Tf > the microscopic field f;{x) created at point x 
by particle i of A is equal to the contribution of i to the macroscopic field <f) (x) 
observed at x 

<f) (x) = f~ a(r) dr fL"r) fi ds. (29) 

This is a consequence of a mathematical property: the average value on a sphere 
(x, r) of the microscopic field fi created by particle i equals f;{x) if i is outside this 
sphere. 

• The integrals in Eq. (27) are over the volumes defined by surfaces At and A2 , respectively . 
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In the case of polarized media, Eq. (25) or (28) can also be applied to a body A 
which includes, in addition, part of the polarizing external bodies, provided of 
course that care is taken to define the pressure tensor <TA ) and the external force 
<f) = <f(" A -> A) with reference to the same body A. 

CONCLUSION 

The Cauchy equation may be written in spatial average in the same form as in en
semble average (Eq. (25) becomes equivalent to Eq. (1)). This is a consequence of 
a great formal parallelism between the derivations of Eq. (1) in ensemble and spatial 
averages. The spatially averaged Eq. (1) is therefore valid even in the case where 
continuous medium N exerts long-range forces on itself. However, in this case, 
n. <TN) cannot be interpreted as a surface density of contact pressure force, and 
Eq. (1) cannot be treated in the usual way noted in the introduction. 

At a point x inside a medium N in equilibrium (V = 0, r = 0), Eq. (25) can be 
applied either to medium N, or to the union M uN of N and of the external bodies 
M == "N (the Earth being generally excluded from M as above). The corresponding 
equations 

V. <TN) (x) = -<f(M -> N) - <Q) g 

V. <TMuN ) (x) = -<(!) g 

differ from each other if M exerts long-range forces on N. 

(30) 

(31) 

Furthermore, the interpretation of V. <TN) as the resultant force F(N" B -> B} 
exerted on a unit elementary volume B of the medium by the rest N" B of the medium 
is wrong, except for spherical B: in fact, if the medium is in equilibrium, we do not 
have only r = 0, but in most common cases also 

L m;,"y/j; * a = O. (32) 
iEN 

Therefore, we have 

(33) 

If B is chosen to be spherical and of radius R around the point x, and the filter 
function a is chosen to be uniform in the ball (0, R) (of value (11tR3t1), then the 
macroscopic force distribution <feN -> N) (x) coincides with the resultant force 
F(N "B -> B) divided by the volume of B. In such a case we have 

(34) 
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and the same reasoning applied to M u N shows that 

(35) 

The interpretation (34) of V . <TN> does not apply to nonspherical B and it must not 
be confused with the relation 

(36) 

(obtained by integrating Eq. (22», in which a microscopic field pressure tensor is 
involved; Eq. (36) applies to any B. 

In ref.12 we have assumed a special form and orientation for volume B: Eq. (25) 
can then be applied to B itself as in the preceding section, by choosing dimensions 
of B which are great with respect to R but small compared to the dimensions of the 
systems. Eq. (25) is then written as 

(37) 

where the force distribution V . <TB> = <f(B .... B» is generally not zero. Eq. (37) 
must be distinguished from Eq. (34) or (35) in which the external force is of positive 
sign. 
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